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Abstract— in this paper we are going to discuss about
the difference between FDM and normal data mining algorithm
in finding frequent item-sets globally as well as locally. How this
difference can be used as an application in market basket
analysis with respect to supplier of the item. We also use the
concept of hierarchical data mining for applying different
support at different levels.
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1 Introduction

We study the difference between FDM and normal A-priori
algorithm for mining of frequent item-sets. In A-priori
algorithm mining will be performed on all the transactions,
which is obtained by merging transactions from different
sources. This results in finding globally frequent item-sets. In
case of FDM, mining will be performed separately with
respect to transactions that corresponds to separate sources,
these results in locally frequent item-sets. Then, these locally
frequent items from separate sources will be merged (union) to
obtain candidate set which will be broadcasted to all the
sources to find the local support count of all the items in them,
on which the union will be performed at each source i.e..to
sum up the local support count of each item in the candidate
set from neighboring sources. Then consider only those items
whose global support count (sum of local support count of
each item in candidate set) satisfies minimum support count,
this results in globally frequent item-set. So, in FDM we will
be finding both locally frequent item-set as well as globally
frequent.

In this paper we discuss the idea based on one scenario.
Consider in a region there are 3 stores s1, s2 & s3. Here the
supplier belongs to a lays company wants to perform analysis
to find which flavors of lays are purchased more frequently
with respect to each store. So, only those flavors which are
sold frequently will be supplied next. Here in this scenario we
cannot use normal A-priori mining algorithm, because it gives
frequent item-set globally for that region. Since we need to

find frequently sold lays flavors with respect to each store we
need to find locally frequent lays flavors first and then
globally frequent lays flavors by performing union on them.
So, we will use FDM in this paper. Here, first let us try to
understand normal mining algorithm and FDM with their
difference below.

2 Normal Mining Algorithm using A-priori property

This is the most influential algorithm used in finding the
frequent item-sets which employs iteration approach call
level-wise search. Were, frequent-k item-sets are used to
derive frequent-(k+1) item-sets. Like, if L1 is frequent-1 item-
set using which we derive L2 i.e frequent-2 item-set and then
L3 so on.. Until there are no frequent item-sets. To find each
Lk entire database has to be scanned. So, to improve the
efficiency of level-wise generation of frequent item-set we use
another property called A-priori property.

A-priori property defines 2 important conditions:

i) If an item-set is said to be frequent then all of its non-empty
subset must also be frequent.

Ex: If item-set I = {milk, bread} is frequent-2 then, milk
& bread must be frequent-1.
An item-set I is said to be frequent if it satisfies
minimum support threshold. This defines minimum
no. of transactions in the database that must contain
the items in the item-set I. If I doesn’t satisfy
minimum support then it is not frequent.

ii) A-priori property is based on another most important
property called anti-monotone property. Which states that
if a set fails a test, then all of its superset will also fail the
test.

Ex: If an item-set I = {milk, bread} fails to satisfy.
minimum support to be frequent-2, then all of its
superset like {milk, bread, egg} or {milk, bread,
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biscuit} also fails to support minimum support threshold to be
frequent-3 because {milk, bread} are not frequent-2 so it
cannot be frequent-3.

A-priori algorithm involves 2 steps:

i) Join step:
To find Lk, first we need to join Lk-1 to itself (Lk-1 natural join
Lk-1). The resultant is represented as Ck i.e candidate K item-
Set.

ii) Prune step:
Ck is the superset of Lk. Its members may or may not be
Frequent but all the frequent-K item-sets must be in Ck.
After finding Ck by joining Lk-1 to itself we scan the
database to find the count of the members in Ck. Then, those
item-sets in Ck which satisfies minimum support count are
considered as members of Lk.

Example: Let D be the database of 18 transactions having
items {1, 2, 3, 4, 5} and support S = 1/3.
D = {12, 12345, 124, 1245, 14, 145, 235, 24, 24, 1234, 134,
23, 234, 2345, 1234, 124, 134, 23}
Min_sup_count = 1/3 X 18 = 6

Iteration 1:
First we need to find C1 (candidate-1 item-set)

C1 = {1(11), 2(14), 3(10), 4(14), 5(5)}

Now, consider only those items from C1 which satisfies
min_sup_count to obtain L1 (frequent-1 item-set)

L1 = {1, 2, 3, 4}

Iteration 2:
To obtain C2 we need to join L1 to itself.

C2 = {12(7), 13(5), 14(10), 23(8), 24(10), 34(7)}

L2 = {12, 14, 23, 24, 34}

Iteration 3:
To obtain C3 we need to join L2 to itself.

C3 = {123(3), 124(6), 134(5), 234(5)}

L3 = {124}

Hence, frequent item-sets generated are {1, 2, 3, 4, 12, 14, 23,
24, 34, 124}.

3 Fast Distributed Mining (FDM)

The FDM algorithm proceeds as follows:

1) Initialization: It is assumed that the players have already
jointly calculated Fs

k−1. The goal is to proceed and calculate
Fs

k.

2) Candidate Sets Generation: Each player Pm computes the
set of all (k − 1)-item-sets that are locally frequent in his
site and also globally frequent; namely, Pm computes the set
Fs

(k−1, m) ∩ Fs
(k-1). He then applies on that set the A-priori

algorithm in order to generate the set Bs
(k, m) of Candidate k-

item-sets.

3) Local Pruning: For each X Bs
(k, m) , Pm computes Supp

(Xm). He then retains only those item-sets that are locally s-
frequent. We denote this collection of item-sets by Cs

(k, m).

4) Unifying the candidate item-sets: Each player broadcasts
his  Cs

(k, m) and  then  all  players  compute  Cs := U Cs
(k, m) for

m = 1 to M.

5) Computing local support: All players compute the local
supports of all item-sets in Cs

k.

(6) Broadcast Mining Results: Each player broadcasts the
local supports that he computed. From that, everyone can
compute the global support of every item-set in Cs

k. Finally,
Fs

k is the subset of Cs
k that consists of all globally s-frequent

item-sets.

Example:

Let D be a database of N = 18 item-sets over a set of L = 5
items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3
players, and the corresponding partial databases are:

D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24}
D2 = {1234, 134, 23, 234, 2345}
D3 = {1234, 124, 134, 23}

For example, D1 includes N1 = 9 transactions, the third of
which (in lexicographic order) consists of 3 items — 1, 2 and
4.
Setting s  = 1/3,  an item-set is  s-frequent  in  D  if  it  is
supported by at least 6 = sN  of its transactions. In this case,

Fs
1 = {1, 2, 3, 4}

Fs
2 = {12, 14, 23, 24, 34}

Fs
3 = {124}

Fs
4 = Fs5 =

Fs represent all the frequent item-sets generated

Fs = Fs
1 U Fs

2 U Fs
3
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Iteration 1: All the three players compute Cs
(1, m) of all 1-item-

sets that are locally frequent at their partial databases

Cs
(1, 1) = {1, 2, 4, 5}, Cs

(1, 2) = {1, 2, 3, 4}, Cs
(1, 3) = {1, 2, 3, 4}

Now, Cs
1 that is candidate - 1 item-sets is obtained by

performing union,

Cs
1 = Cs

(1, 1) U Cs
(1, 2) U Cs

(1, 3)

Cs
1 = {1, 2, 3, 4, 5}

From Cs
1 consider only that item which satisfies minimum

support 6 to get Fs
1 that are frequent – 1 item-sets.

Fs
1 = {1, 2, 3, 4}

Iteration 2:

Cs
(2, 1) = {12, 14, 24}

Cs
(2, 2) = {13, 14, 23, 24, 34}

Cs
(2, 3) = {12, 13, 14, 23, 24, 34}

Cs
2 = Cs

(2, 1) U Cs
(2, 2) U Cs

(2, 3)

Cs
2 = {12, 13, 14, 23, 24, 34}

Fs
2 = {12, 14, 23, 24, 34}

Iteration 3:

Cs
(3, 1) = {124}

Cs
(3, 2) = {234}

Cs
(3, 3) = {124}

Cs
3 = Cs

(3, 1) U Cs
(3, 2) U Cs

(3, 3)

Cs
3 = {124, 234}

Fs
3 = {124}

4 Difference between FDM and Normal A-priori mining
Algorithm

In the previous section we saw the examples of both A-priori
and FDM. Were, A-priori is applied on all the transactions at
once to find the item-sets which satisfies global support. Were
as in case of FDM which is distributed mining, transactions
will be divided into partitions with respect to players or stores.
Then, we find the item-sets which are locally frequent with
respect to each store and then perform the union of these
locally frequent item-sets to obtain candidate-K item-set (Ck),
which will be broadcasted to all the other stores to calculate
the local support count of all the item-sets in Ck. Now find the
sum of the local support counts of each item in Ck from all the
store and consider only those item-sets from Ck which satisfies
global support.

So, in FDM we find item-sets which satisfies locally and
item-sets which satisfy globally. Were, in A-priori we find
item-sets which are globally frequent.

5 Advantages of FDM over A-priori (normal mining
Algorithm) and its application with respect to supplier in
market basket analysis

To explain how FDM will be helpful with respect to the
supplier for supplying the items to the stores based on the
previous history of items sold in each store. Let us take an
example, consider a region (area) in which there are 3 stores
S1, S2 & S3. The supplier belongs to lay’s company and he
wants to know what flavors of lays are sold frequently so that
he can supply only those flavors which are frequently sold.
For illustration let us consider 3 flavors “Lays salted” as Ls,
“Lays australian” as La and “Lays indian” as Li.

Consider in 3 stores S1, S2 & S3 100 transactions has been
carried out in a week and consider each store is supplied with
60 packs of lays, 3 flavors of 20 packs each. Here we will be
using the concept of hierarchical data mining so that different
support can be applied at different level. The steps are as
followed:

1) First we need to find out of 100 transactions weather lays is
frequent or not for the given minimum support, through which
we can find how many packs of lays are sold in that particular
store in a week. Assuming that each transaction can have only
one pack of lays instantly.

Ex: min_sup = 40% then, min_sup_count = 0.4 x100 = 40. If
out of 100 transactions, in S1 if 45 transactions contains lays
that means 45 packs of lays has been sold, in S2 if 51 packs are
sold and in S3 if 40 packs are sold. Then lays is frequently sold
in all the 3 stores.

2) After finding no. of packs sold by each store, now we need
to find out of those no. of packs sold how many packs belongs
to each of the 3 flavors. So that we can find what flavors are
frequent for the given minimum support.

Ex: In S1 out of 45, let Ls=20, La =20, Li=5.
In S2 out of 51, let Ls=15, La=16, Li=20.
In S3 out of 40, let Ls=5, La=20, Li=15.

Since 20 packs of each flavor is sold to each store, let min_sup
= 60%
So, min_sup_count = 0.6 X 20 = 12. That means for a
particular flavor to be frequent minimum of 12 packs of that
flavor has to be sold. So, in S1 frequent flavors are Ls & La, in
S2 frequent flavors are Ls, La & Li, in S3 frequent flavors are La
& Li.

Note - In step 1 we used min_sup as 40% to find weather lays
is frequently sold or not, in step 2 we used min_sup as 60% to
find which flavors of lays are frequent in store. Since we used
two different min_sup at two different steps is known as
hierarchical data mining.

The above details of no. of packs that are sold with respect
to each store and with respect to each flavor in each store is
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shown in below table. In the table for example 20(15) means
out of 20 packs of lays which is been supplied 15 are sold.

Lays
Flavor’s/
Stores

S1 S2 S3

Ls 20(20) 20(15) 20(5)

La 20(20) 20(16) 20(20)

Li 20(5) 20(20) 20(15)

Supplier knows that item lays is frequent in all the stores S1,
S2 & S3. Now, supplier needs to know which are the frequent
flavors that are sold in these stores were the lays is frequent.
Assume min_sup = 60% and item-set I = {Ls, La, Li}. Since
min_sup = 60%, min_sup_count = 0.6 X 20 = 12. So, if a
flavor is said to be frequent in a store then minimum of 12
packs of that flavor has to be sold by that store.

We apply FDM, first to know which flavors of lays are locally
frequent with respect to each store and then find the flavors
which are globally frequent by performing union. The
procedure is as follows:

Cs
(1, S1) = {Ls, La}

Cs
(1, S1), means frequent-1 lays flavors in store S1 which are

locally s-frequent that is Ls and La because in S1 “Lays salted”
of 20 packs and “Lays australian” of 20 packs are sold which
satisfies min_sup_count = 12 packs.

Cs
(1, S2) = {Ls, La, Li}

Cs
(1, S3) = {La, Li}

So, these are the lays flavors which are frequently sold locally
in S1, S2 & S3. Now supplier can supply only those flavors.

To know the flavors which are globally frequent perform the
union of Cs

(1, S1), Cs
(1, S2) & Cs

(1, S3) to get Cs
1 which is

candidate-1 item-set.

Cs
1 = Cs

(1, S1) U Cs
(1, S2) U Cs

(1, S3)

Cs
1 = {Ls, La, Li}

This Cs
1 will be broadcasted to all the stores S1, S2 & S3 to find

the local support count of all the items in each store. Now,
each store will broadcast the local support count it computed
for each item in Cs

1 to all the neighboring stores in the region.
All the stores compute the sum of local support count with
respect to each item in Cs

1. Then consider only those items
from Cs

1 which satisfies global support count which gives Fs
1.

Cs
(1, count(S1)) = {Ls(20), La(20), Li(5)}

Here, Cs
(1, count(S1)) means the local support count of all the

items in Cs(1) with respect to S1.

Cs
(1, count(S2)) = {Ls(15), La(16), Li(20)}

Cs
(1, count(S3)) = {Ls(5), La(20), Li(15)}

Cs
(1, count) = Cs

(1, count(S1)) U Cs
(1, count(S2)) U Cs

(1, count(S3))

Cs
(1, count) = {Ls(40), La(56), Li(40)}

Global min_sup = 40%, so global min_sup_count = 0.4 X 100
= 40. So, consider only those flavors from Cs

(1, count) which
satisfies global min_sup_count 40 to get globally frequent lays
flavors Fs

1.
In Cs

(1, count) all the lays flavors satisfy global min_sup_count
40,

Fs
1 = {Ls, La, Li}.

In FDM most important part is finding the item-sets which
are locally frequent which helps the supplier to supply only
those items which are locally frequent in those stores.
Globally frequent item-sets are found just to keep the record
for each region, which are the frequently sold items in that
region. But for supplying items it is better to consider locally
frequent item-set and not globally.

What if instead of using FDM if we have applied or used
normal A-priori mining algorithm?

As we know that normal A-priori mining is applied on all the
transactions from different stores at once. If normal A-priori
algorithm was applied on all the transactions from stores S1, S2
& S3 then we would not be able to find item-sets which are
locally frequent like Cs

(1, S1), Cs
(1, S2) & Cs

(1, S3) like in FDM.
Instead we would have ended up directly with item-sets which
are globally frequent like Fs

1.
Let us apply normal A-priori algorithm for the above

transactions from S1, S2 & S3. Given that each store all
supplied with 60 packs of lays with 3 flavors of 20 packs each.
So that in that region 180 packs are supplied, 60 packs of each
flavor.

Here, transactions from all the stores S1, S2 & S3 are
merged to-gather so we will have 300 transactions (100
transactions from each store). Out of these 300 transactions
136 transactions contains lays (45 from S1, 51 from S2 & 40
from S3) that means totally 136 packs of lays are sold. Out of
these 136 packs we need to find how many packs with respect
to each flavor are sold. That will be Ls = 40, La = 56, Li = 40.

Normal A-priori algorithm is applied as follows assuming
global   min_sup = 60%. Globally 60 packs of each flavor is
supplied. So, min_sup_count = 0.6 X 60 = 36 packs. A
particular lays flavor is said to be globally frequent if a
minimum of 36 packs are sold globally.
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Item-set I = {Ls, La, Li}

First we need to find candidate-1 item-set Cs
1 which contains

all the items in item-set I and their global count as follows

Cs
1 Item count

Ls 40

La 56

Li 40

From the above table that is candidate-1 item-set Cs
1 consider

only those items which satisfy min_sup_count = 36 to obtain
globally frequent-1 item-set Fs

1,

Fs
1 = {Ls, La, Li}

Now, in this case supplier only know these are the flavors
of lays which are frequently sold in that region but, he doesn’t
know what flavors of lays are sold frequently in each store.
So, supplier will again supply 60 packs to each store with 3
flavors of 20 packs each. That means supplier will again
supply “lays Indian” Li flavor of 20 packs to store S1 even
though Li flavor is not frequently sold in S1 because of which
the item reach its expiry date since it will be unsold and it is a
loss to the company if it is the case with respect to thousands
or many stores.
So, we can conclude that FDM has an upper hand than Normal
A-priori mining algorithm.

6 Identifying all (s; c)-association rules

Once the set F of all s-frequent item-sets is found, we may
Proceed to look for all (s, c) – association rules (rules with
support at least sN and confidence at least c) For X, Y FS,
where X intersection Y = Ø, the corresponding association
rule X Y has confidence at least c if and only if,

supp(X Y) / supp(X) = c

or

M
CX,Y := ∑  (suppm (X Y ) - c · suppm(X))>=0

m=1

7 Conclusion

Here in the example which we took to explain the application
with respect to the supplier using FDM, we made an
assumption that each transaction contains only one pack of
lays. Like in case of S1 were 45 transactions out of 100
contained lays, means 45 packs of lays are sold by S1. If a
transaction can have more than one lays pack sold, in case

were a person purchase more than one lays pack. Then the no.
of lays pack sold by that store can be greater than the no. of
transactions that contain lays item. In this case how to find the
no. of lays packs that are sold by the store?

While finding globally frequent item-set, each store
broadcast the local support count of items in candidate-1 item-
set Cs

1 = {Ls, La, Li} to all other store’s to find the global
support count by performing union on them. Here, the local
support count of items in Cs

1 are private with respect to each
store so when they are broadcasted to other stores it must be
sent in a secured manner, so that the local support counts of
items in Cs

1 with respect to a particular store will not be
known to other stores. Union must be performed securely.

In store S1 consider 30 packs of lays are sold which is less
than min_sup_count = 40. So, this item is not frequent and
supplier will not supply lays to that store. But, out of these 30
packs which are sold, if 20 are Ls, 5 are La & 5 are Li. This
means “Lays salted” Ls flavor which are supplied to store S1
with 20 packs has sold all the 20 packs so Ls flavor is frequent
in store S1. Even though Ls is frequent supplier will fail to
supply this flavor to that store S1.
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